在本文中,我们将详细讲解如何使用C#的GDI+实现直线插补运动的模拟。上图展示了一个基本的直线插补示意图,我们将通过代码来实现这个效果。
直线插补是数控系统中的一个基本概念,它是指在两点之间通过算法计算出中间点的过程,使运动呈现连续平滑的状态。
C#using System.Drawing.Drawing2D;
using Timer = System.Windows.Forms.Timer;
namespace WinFormsApp2
{
public partial class Form1 : Form
{
private const int GRID_SIZE = 20; // 网格大小
private const int STEP_SIZE = 5; // 步进大小
private Timer animationTimer;
private Point startPoint;
private Point endPoint;
private Point currentPoint;
private Point nextPoint; // 下一个目标点
private List<Point> interpolationPoints;
private bool isAnimating = false;
public Form1()
{
InitializeComponent();
this.SetStyle(
ControlStyles.DoubleBuffer |
ControlStyles.UserPaint |
ControlStyles.AllPaintingInWmPaint,
true);
startPoint = new Point(100, 100);
endPoint = new Point(500, 400);
currentPoint = startPoint;
interpolationPoints = new List<Point> { startPoint };
animationTimer = new Timer();
animationTimer.Interval = 100;
animationTimer.Tick += AnimationTimer_Tick;
this.Paint += LineInterpolationForm_Paint;
this.KeyPress += LineInterpolationForm_KeyPress;
}
private void LineInterpolationForm_KeyPress(object sender, KeyPressEventArgs e)
{
if (e.KeyChar == ' ')
{
if (!isAnimating)
{
currentPoint = startPoint;
interpolationPoints.Clear();
interpolationPoints.Add(startPoint);
isAnimating = true;
animationTimer.Start();
}
else
{
isAnimating = false;
animationTimer.Stop();
}
}
}
private Point CalculateNextIdealPoint()
{
// 计算下一个X位置
int nextX = currentPoint.X + STEP_SIZE;
// 确保不超过终点
if (nextX > endPoint.X)
nextX = endPoint.X;
// 计算理想直线上的Y值
double slope = (double)(endPoint.Y - startPoint.Y) / (endPoint.X - startPoint.X);
int nextY = (int)(startPoint.Y + slope * (nextX - startPoint.X));
return new Point(nextX, nextY);
}
private void AnimationTimer_Tick(object sender, EventArgs e)
{
if (currentPoint.X >= endPoint.X && currentPoint.Y >= endPoint.Y)
{
animationTimer.Stop();
isAnimating = false;
return;
}
// 计算理想的下一个点
nextPoint = CalculateNextIdealPoint();
// 决定移动方向
Point previousPoint = currentPoint;
if (Math.Abs(currentPoint.Y - nextPoint.Y) > Math.Abs(currentPoint.X - nextPoint.X))
{
// Y方向误差大,优先移动Y
if (currentPoint.Y < nextPoint.Y)
currentPoint.Y += STEP_SIZE;
else
currentPoint.Y -= STEP_SIZE;
}
else
{
// X方向优先
currentPoint.X += STEP_SIZE;
}
interpolationPoints.Add(currentPoint);
this.Invalidate();
}
private void LineInterpolationForm_Paint(object sender, PaintEventArgs e)
{
Graphics g = e.Graphics;
g.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.AntiAlias;
// 绘制网格
DrawGrid(g);
// 绘制理想直线
using (Pen idealLinePen = new Pen(Color.Blue, 1))
{
g.DrawLine(idealLinePen, startPoint, endPoint);
}
// 绘制插补路径
if (interpolationPoints.Count > 1)
{
using (Pen interpolationPen = new Pen(Color.Red, 2))
{
for (int i = 1; i < interpolationPoints.Count; i++)
{
g.DrawLine(interpolationPen,
interpolationPoints[i - 1],
interpolationPoints[i]);
}
}
// 绘制当前步进的补差线
if (isAnimating && interpolationPoints.Count > 0)
{
using (Pen errorPen = new Pen(Color.Green, 1))
{
errorPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dash;
// 只绘制当前点到理想下一点的补差线
Point currentIdealPoint = CalculateNextIdealPoint();
g.DrawLine(errorPen, currentPoint, currentIdealPoint);
}
}
}
// 绘制起点和终点
using (SolidBrush brush = new SolidBrush(Color.Green))
{
g.FillEllipse(brush, startPoint.X - 5, startPoint.Y - 5, 10, 10);
g.FillEllipse(brush, endPoint.X - 5, endPoint.Y - 5, 10, 10);
}
// 绘制当前点
using (SolidBrush brush = new SolidBrush(Color.Red))
{
g.FillEllipse(brush, currentPoint.X - 3, currentPoint.Y - 3, 6, 6);
}
// 如果正在运动,绘制下一个理想点
if (isAnimating)
{
using (SolidBrush brush = new SolidBrush(Color.Blue))
{
Point idealNext = CalculateNextIdealPoint();
g.FillEllipse(brush, idealNext.X - 2, idealNext.Y - 2, 4, 4);
}
}
DrawLegend(g);
}
private void DrawLegend(Graphics g)
{
int legendX = 10;
int legendY = 10;
int legendSpacing = 20;
// 理想直线图例
g.DrawLine(new Pen(Color.Blue, 1), legendX, legendY, legendX + 30, legendY);
g.DrawString("理想直线", this.Font, Brushes.Black, legendX + 40, legendY - 7);
// 插补路径图例
legendY += legendSpacing;
g.DrawLine(new Pen(Color.Red, 2), legendX, legendY, legendX + 30, legendY);
g.DrawString("插补路径", this.Font, Brushes.Black, legendX + 40, legendY - 7);
// 补差线图例
legendY += legendSpacing;
using (Pen errorPen = new Pen(Color.Green, 1))
{
errorPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dash;
g.DrawLine(errorPen, legendX, legendY, legendX + 30, legendY);
}
g.DrawString("当前补差", this.Font, Brushes.Black, legendX + 40, legendY - 7);
// 下一理想点图例
legendY += legendSpacing;
using (SolidBrush brush = new SolidBrush(Color.Blue))
{
g.FillEllipse(brush, legendX + 13, legendY - 2, 4, 4);
}
g.DrawString("下一理想点", this.Font, Brushes.Black, legendX + 40, legendY - 7);
}
private void DrawGrid(Graphics g)
{
using (Pen gridPen = new Pen(Color.LightGray, 1))
{
for (int x = 0; x < this.Width; x += GRID_SIZE)
{
g.DrawLine(gridPen, x, 0, x, this.Height);
}
for (int y = 0; y < this.Height; y += GRID_SIZE)
{
g.DrawLine(gridPen, 0, y, this.Width, y);
}
}
}
}
}
使用说明
GRID_SIZE
:背景网格的大小STEP_SIZE
:每次插补的步进大小这个实现展示了数控系统中直线插补的基本原理。通过可视化的方式,我们可以清晰地看到插补过程是如何通过小步进来逼近理想直线的。这个示例可以作为理解数控系统运动控制的良好起点。
本文作者:技术老小子
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!